3.61 \(\int \frac{1}{\sqrt{a x+b x^3}} \, dx\)

Optimal. Leaf size=92 \[ \frac{\sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt{a x+b x^3}} \]

[Out]

(Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/
a^(1/4)], 1/2])/(a^(1/4)*b^(1/4)*Sqrt[a*x + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0488648, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {2011, 329, 220} \[ \frac{\sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt{a x+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a*x + b*x^3],x]

[Out]

(Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/
a^(1/4)], 1/2])/(a^(1/4)*b^(1/4)*Sqrt[a*x + b*x^3])

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a x+b x^3}} \, dx &=\frac{\left (\sqrt{x} \sqrt{a+b x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x^2}} \, dx}{\sqrt{a x+b x^3}}\\ &=\frac{\left (2 \sqrt{x} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\sqrt{x}\right )}{\sqrt{a x+b x^3}}\\ &=\frac{\sqrt{x} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt [4]{a} \sqrt [4]{b} \sqrt{a x+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0095926, size = 49, normalized size = 0.53 \[ \frac{2 x \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )}{\sqrt{x \left (a+b x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a*x + b*x^3],x]

[Out]

(2*x*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)])/Sqrt[x*(a + b*x^2)]

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 108, normalized size = 1.2 \begin{align*}{\frac{1}{b}\sqrt{-ab}\sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-2\,{\frac{b}{\sqrt{-ab}} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{b \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ){\frac{1}{\sqrt{b{x}^{3}+ax}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a*x)^(1/2),x)

[Out]

1/b*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-2*(x-1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-
x*b/(-a*b)^(1/2))^(1/2)/(b*x^3+a*x)^(1/2)*EllipticF(((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{3} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{b x^{3} + a x}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(b*x^3 + a*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x + b x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a*x)**(1/2),x)

[Out]

Integral(1/sqrt(a*x + b*x**3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{3} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(b*x^3 + a*x), x)